(세부3) 빅데이터 대상의 빠른 질의 처리가 가능한 탐사 데이터 분석 지원 근사질의 DBMS 기술 개발

SOS: Score-based Oversampling for Tabular Data

SOS: Score-based Oversampling for Tabular Data

Jayoung Kim¹, Chaejeong Lee¹, Yehjin Shin¹, Sewon Park², Minjung Kim², Noseong Park¹, Jihoon Cho²

Yonsei University¹, Samsung SDS²

Motivation

- Class imbalance problems lead to sub-optimal training outcomes.
- Around the class boundary, many samples are placed regardless of their class.
- It is important to oversample focusing on where classifiers are difficult to classify.

Contributions:

- 1. Design **a score-based generative model** for tabular data.
- 2. Propose **a fine-tuning method**, further enhancing the generation quality.
- 3. Propose a style transfer-based oversampling method to generate samples around the class boundary.

Proposed Method

1. Train a score-based generative model for each class.

- Separately train two SGMs for major and minor classes.
- Smaller steps are enough to solve the reverse SDE.

2. Fine-tune the minor score network.

Experiments

• Weighted F1 is to give a higher weight to a smaller class.

Experimental Results

	Mathada	Single Minority				Multiple Minority	
	memous	Default	Shoppers	Surgical	WeatherAUS	Buddy	Satimage
Identity		0.515±0.035	0.601 ± 0.039	0.687 ± 0.004	0.657 ± 0.016	$0.603{\scriptstyle\pm0.010}$	0.817 ± 0.004
Baselines	SMOTE	0.561±0.025	0.648 ± 0.004	0.678 ± 0.008	0.674 ± 0.025	0.584 ± 0.005	0.846 ± 0.005
	B-SMOTE	0.561±0.029	$0.640{\scriptstyle \pm 0.042}$	0.671 ± 0.004	0.663 ± 0.022	0.595 ± 0.003	0.845 ± 0.005
	Adasyn	0.558 ± 0.023	0.630 ± 0.045	0.662 ± 0.007	0.658 ± 0.022	$0.608{\scriptstyle\pm0.002}$	0.841 ± 0.008
	MedGAN	0.532 ± 0.028	0.620 ± 0.062	0.686 ± 0.003	0.656 ± 0.022	0.598 ± 0.011	0.835 ± 0.019
	VEEGAN	0.495 ± 0.076	0.607 ± 0.065	0.680 ± 0.117	0.661 ± 0.025	0.555 ± 0.036	0.840 ± 0.031
	TableGAN	0.423 ± 0.115	0.571 ± 0.097	0.704 ± 0.001	0.579 ± 0.066	0.570 ± 0.019	0.813 ± 0.013
	TVAE	0.536 ± 0.035	0.610 ± 0.060	0.681 ± 0.004	0.652 ± 0.018	0.552 ± 0.044	0.846 ± 0.031
	CTGAN	0.545 ± 0.022	0.605 ± 0.059	0.701 ± 0.004	0.659 ± 0.020	0.593 ± 0.009	0.833 ± 0.015
	OCT-GAN	0.531 ± 0.018	0.639 ± 0.029	0.692 ± 0.082	0.656 ± 0.018	0.551 ± 0.015	0.837 ± 0.011
	BAGAN	0.525 ± 0.005	0.610 ± 0.005	0.668 ± 0.004	0.663 ± 0.002	0.555 ± 0.013	0.834 ± 0.011
SOS	VE	0.571±0.003	0.675±0.004	0.709 ± 0.003	0.672 ± 0.002	0.607 ± 0.007	0.854 ± 0.002
	VP	0.559 ± 0.006	0.658 ± 0.003	0.712 ± 0.002	0.680 ± 0.002	0.607 ± 0.011	0.857±0.006
	Sub-VP	0.574±0.003	0.673 ± 0.002	0.714 ± 0.001	0.680±0.003	0.608±0.002	0.855 ± 0.004

Related Work

Score-based Generative Models (SGMs) [1]

Forward SDE (data \rightarrow noise) $d\mathbf{x} = \mathbf{f}(\mathbf{x}, t)dt + g(t)d\mathbf{w}$ $\mathbf{x}(0) \qquad \mathbf{x}(T)$ Reverse SDE (noise \rightarrow data) $d\mathbf{x} = [\mathbf{f}(\mathbf{x}, t) - g^2(t)\nabla_{\mathbf{x}} \log p_t(\mathbf{x})]dt + g(t)d\overline{\mathbf{w}}$

- L. SDE-based framework
- Forward SDE is to add gaussian noises to $\mathbf{x}(0)$.
- **Reverse SDE** is to remove noises from $\mathbf{x}(T)$.
- The score network approximates the score function:

 $S_{\theta}(\mathbf{x}_t, t) \approx \nabla_{\mathbf{x}} \log p_t(\mathbf{x})$

- 2. Denoising score matching loss
 - Estimate the score of the perturbed data distribution.
 - Collect the gradient of log transition

- **I. Evaluate scores with each score network** at $(\mathbf{x}_t, t = \epsilon_t)$
 - A record **x** is from the entire data regardless of class.
 - A time ϵ_t (a small value close to 0) means the last moment of the reverse SDE.
- **II. Calculate an angle** between the gradient of major and minor classes.
 - When the angle is smaller than ξ , their directions are similar.
- III. Decrease the gradient of the minor score network by a factor of *w*. $L(x,t) = \|S_{\theta}(\mathbf{x}_{t},t) - wg_{x,t}\|_{2}^{2}$

3. Oversample minor class records.

Option 1: \mathbf{x}_0^+ —Forward SDE $\rightarrow \mathbf{x}_T^+$ —Reverse SDE $\rightarrow \hat{\mathbf{x}}_0^-$ Option 2: $\mathcal{N}(\mu, \sigma^2) \sim \mathbf{z}$ —Reverse SDE $\hat{\mathbf{x}}_0^-$

- Identity is a minimal requirement for oversampling.
- SOS clearly outperforms all baseline methods and increases the F1 score after oversampling in all cases.

Column-wise histogram & t-SNE plot

 SOS successfully captures the real distribution, but CTGAN fails.

Jon-target record X_0^+

esponding fake target record \hat{x}_0^-

The scatter plot shows real and fake

probability $\nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t | \mathbf{x}_0)$ during forward SDE.

• $\theta^* = \arg\min_{\theta} \mathbb{E}_t \mathbb{E}_{\mathbf{x}_t} \mathbb{E}_{\mathbf{x}_0} \lambda(t) \left[\left\| S_{\theta}(\mathbf{x}_t, t) - \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t | \mathbf{x}_0) \right\|_2^2 \right]$

Oversampling

- The samples around the class boundary have both major and minor characteristics.
- By generating samples around the class boundary, classifiers
- Major A Minor can be trained to classify the
 - samples better.

- I. Style transfer-based oversampling
 - Select the major class record \mathbf{x}_0^+ .
 - Derive a noisy vector \mathbf{x}_T^+ .
 - Transfer \mathbf{x}_T^+ to $\hat{\mathbf{x}}_0^-$ using the minor's reverse SDE.
 - x_T^+ contains information on its original record.
 - Generate a sample around the class boundary.
- II. Plain score-based oversampling
 - Sample a noisy vector $\mathbf{z} \sim \mathcal{N}(\mu, \sigma^2)$.
 - Follow the standard use of SGMs.

records with style transfer-based oversampling.

Solid red dots are around the class
 boundary.

Reference

[1] Song et al., Score-Based Generative Modeling through Stochastic Differential Equations. In ICLR, 2021.

▲ 과학기술정보통신부 빅데이터 분석 및 AI 처리를 위한 클라우드向 차세대 DBMS 기술 ● 정보통신기획평가원